Nhat are containers?

2

knock knock...wake up...

You want to know what containers are?

Olaf Bohlen What are containers?

2

The Spoon

o Do not try to run containers,
that's impossible. Instead,
only try to realize the
truth. ..

o What truth?

o There is no container. ..

o There is no container?

@ Then you'll see that it is not

the container which runs, it
is the process itself.

Olaf Bohlen What are containers?

What Is A Process? N

o it has its own private memory
@ violations against process memory borders get a SIGSEGV(11)
@ a process has a heap, a stack, code (TEXT) and data (ANON)

o the process can be observed by ps(1), which shows some

attributes:
$ ps —-fp $$

UID PID PPID C STIME TTY TIME CMD
olbohlen 11651 10046 0 23:07:43 pts/6 0:00 ksh

o we see the user id, process id, parent-pid, start time, the tty,
the cpu time and command name

@ in UNIX these attributes are bundled in a C structure called
proc_t

o Linux uses task _struct which is a more hierarchical structure

Olaf Bohlen What are containers?

Container Implementations N

There are various implementations:

o Linux: OpenVZ (2005), docker (2013), podman (72018),
etc. .

o FreeBSD: jails (Mar 2000)
o illumos/Solaris: containers (Feb 2004)
o AIX: wpars

and various others. . .

Olaf Bohlen What are containers?

The Lady In The Red Dress N]:]:l:

Welcome to a training program, let's start a simple container with
podman. ..

[olbohlen@rhel85 ~]$ podman run -d ubi8 sleep 10000
6p336fb0012f6f3d8fadca333ele2bd900b7ede9560594bb0c5acc27a3aefdee

[olbohlen@rhel85 ~]$ podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
6b336fb0012f registry.access.redhat.com/ubi8:latest sleep 10000 2 seconds ago Up 2 second
[olbohlen@rhel85 ~]$ ps -ef | grep "sleep 10000"

olbohlen 5026 5017 0 23:44 2 00:00:00 /usr/bin/coreutils --coreutils-prog-sheba
[root@6b336fb0012f /]# ps -ef | grep sleep

root 1 0 0 22:44 2 00:00:00 /usr/bin/coreutils --coreutils-prog-sheba
[olbohlen@rhel85 ~]$ ps -fzp 5017

LABEL UID PID PPID C STIME TTY TIME CMD
unconfined_u:system_r:container_runtime_t:s0 olbohlen 5017 1 0 23:44 2 00:00:00 /usr/bin/

Olaf Bohlen

hat are containers?

2

First a Few Details

@ podman uses (8) - the OCI container runtime

@ containers are instantiated using different technologies
namespaces: providing resource "visibilities"

cgroups: limiting compute resources as cpu and memory
chroot: creating a fake root directory

seccomp: limiting access to systemcalls

SELinux: proving extra layers to prevent escapes

© 6 6 o o

Olaf Bohlen What are containers?

The World You See Is Not Real NIEF

Namespaces "scope" the visibility of various things Linux supports
different types of (7) like:

o cgroup: Cgroup root directory

@ ipc: System V IPC, POSIX message queues
o mnt: Mount points

o net: Network devices, stacks, ports, etc.

o pid: Process IDs

o user: User and group IDs

@ uts: Hostname and NIS domain name

Which can isolate processes in different ways Namespaces can be
created by (1)

Olaf Bohlen What are containers?

Let’s Learn Some Kung Fu N]:]:l:

Let's build a simple container on our own with (1) and

(1):

$ mkdir -p ~/sysroot/{bin,libé64,proc}

$ for f in $(ldd /bin/{bash,df,ls,lsns,mount,ps,uname} | \

> tr [:1” '\n’ | grep /); do cp $f sysroot/$f; done

$ sudo mount --bind /home/olbohlen/sysroot/proc /home/olbohlen/sysroot/proc

$ unshare -irmnpuUCf --mount-proc=$PWD/sysroot/proc chroot $PWD/sysroot /bin/bash
bash-4.4# /bin/ps -ef

UID PID PPID C STIME TTY TIME CMD

0 1 0 0 16:58 2 00:00:00 /bin/bash

0 2 1 0 16:58 2 00:00:00 /bin/ps -ef

bash-4.4# /bin/mount
/dev/mapper/rhel_rhel85-root on /proc type xfs (rw,relatime,seclabel,attr2,inode64, logbufs=8,
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)

hat are containers?

Olaf Bohlen

2

So, Was That Real?

Well, we have to trust Linux here a bit... But on other UNIX
systems we can actually dig deeper:

Our rabbit hole entry is the kernel debugger, which we can attach
to a running UNIX kernel and observe (and modify) the system live.
Allow me to do that on illumos, as the process structures are a bit
more "organized".

Olaf Bohlen What are containers?

Again A Bit Of Boring Info NIIJ;

When we attach the kernel debugger (mdb) against a running
kernel, we have raw memory access. UNIX organizes data in C
structures, which may contain other data types such as int or char
(or again structs).

A simple C structure could look like this:

struct position {
int x;

int y;

};

And if we would read the struct it may look like:

42
23

position.x
position.y

Olaf Bohlen What are containers?

2

With Annoying Details...

(Un)fortunately the debugger does not know the format of a data
structure at a given address, so we need to validate that we got

correct data.

The debugger has some commands to look at known places for
certain structures, such as the process table or in our example the
list of containers.

Olaf Bohlen What are containers?

Down The Rabbit Hole N

So let's run the debugger:

(701) x230:/root# mdb -k

Loading modules: [unix genunix specfs dtrace mac cpu.generic uppc apix scsi_vhci zfs sata sd
> ::zone

ADDR ID STATUS NAME PATH
fEfffffffbd08c20 0 running global /
fffffel6886626c0 1 running asterix /export/zones/asterix/root/
fffffel6929ebd80 2 running obelix /export/zones/obelix/root/
fffffel6bbc66500 4 running rhel85 /export/zones/rhel85/root/

Wait, we have a container called "rhel85", wasn't that the rhel
machine from the demos before? Yes, actually that container runs
a bhyve hypervisor process which runs RHEL 8.5. ..

(629) x230:/export/home/olbohlen$ ps —-f -z rhel85

UID PID PPID C STIME TTY TIME CMD

root 15267 5136 0 17:57:03 2 1:40 /usr/sbin/bhyve -U 37960a3a-c5ac-6c8b-dl4b
root 5113 1 0 Jan 01 2 0:00 zsched

root 5136 5113 0 Jan 01 ? 0:00 /usr/bin/python3.5 /usr/lib/brand/bhyve/in

(630) x230:/export/home/olbohlen$

Olaf Bohlen Nhat are containers?

Down The Rabbit Hole N

We have the bhyve process with the PID 15267 running according
to ps(1), let's look in mdb:

> ::ps ! egrep " (PID|bhyve)"
S PID PPID PGID SID UID FLAGS ADDR NAME
R 15267 5136 5113 5113 0 0x4a004000 fffffel6b8d6d010 bhyve

ADDR s the start address in RAM for the proc_t data structure

> fffffel6b8d6d010: :print -a proc_t ! less

[...]

> fffffel6b8d6d010::print -a proc_t p_user.u_psargs

fffffel6b8d6d879 p_user.u_psargs = ["/usr/sbin/bhyve -U 37960a3a-c5ac-6c8b-d14b-8204ca044474

The proc_t structure store all attributes to a process, so those that
(1) shows and more. Also in that proc_t we have the container

id in it (p_zone, think of it as the namespace id):

> fffffel6b8d6d010::print -a proc_t p_zone
fffffel6b8d6d658 p_zone = Oxfffffelbbbc66500
> 0xfffffelbbbc66500::zone
ADDR ID STATUS NAME PATH

fffffelbbbc66500 4 running rhel85 /export/zones/rhel85/root/
>

Olaf Bohlen What are containers?

2

Container Images

o We need images. Lots of
images.

Olaf Bohlen What are containers?

Storing The Data N

podman/docker use so called images to instantiate containers.
These images are made of Layers, like viewfoils on overhead
projectors.

[olbohlen@rhel85 scratch]$ skopeo inspect docker://registry.access.redhat.com/rhscl/postgresqg

> | jg ".Layers"

"sha256:ac08cal07ad9%ed699cbd28339749dd6463a84c73aald468a4241385fcd4ec3876",

"sha256:b46ca46c303b49d886a7585735ebdldc8651e83d0fab5823300cf3a9fd2febel™,

"sha256:cdd22b43a6f986fc909d504043ef6ad6528a6c1927f27c80eea2dl9ffe5079fe",

"sha256:4c9f611df095eef49c081f758ad314b62a297172e22a8a746514d252a7a89c45"
]

This image contains four layers which itself are tar archives which
you can extract.

Olaf Bohlen What are containers?

Exploring The Image

Let's extract an image to a local directory:

[olbohlen@rhel85 scratch]$ skopeo copy —--remove-signatures \

> docker://registry.access.redhat.com/rhscl/postgresql-10-rhel7 dir:///$PWD
Copying blob ac08call7ad9 done

Copying blob b46cad46c303b done

Copying blob cdd22b43a6f9 done

Copying blob 4c9f611df095 done

Copying config 00a55534f8 done

Writing manifest to image destination

Storing signatures

[olbohlen@rhel85 scratch]$ 1s
00a55534£8db45877d6657cc9blba77841c49cb2lccd4dTadc9cd4e98020adbc8
4c9f611df095eefd49c081£758ad314b62a297172e22a8a746514d252a7a89c45
ac08cal07ad9%ed699cbd28339749dd6463a84c73aald468a4241385fc4ec3876
b46cad6c303b49d886a7585735ebdldc8651e83d0fab5823300cf3a9fd2febel
cdd22b43a6£986£c909d504043ef6adb528a6cl927£27c80eea2dl9ffe5079fe
manifest. json

version

Also use jg(1) to inspect the manifest and the config.

Olaf Bohlen

hat are containers?

Finding The Image Config N]:]:l:

There's an obvious manifest.json, so let’s look into it.

[olbohlen@rhel85 scratch]$ jg ".config.digest" <manifest.json
"sha256:00a55534£8db45877d6657cc91ba77841c49cb2lccd4d7adc9cd4e98020adbc8"

’ o
That's our image config, itself a json file:
[olbohlen@rhel85 scratch]$ jg . 00a55534£f8db45877d6657cc9blba77841c49cb2lccd4d7ad4c9cd4e98020a4
{
"architecture": "amd64",

[...]
Looks familiar? Yes, that's more or less podman inspect.

In the manifest.json we also see the layers:

[olbohlen@rhel85 scratch]$ jg ".layers[].digest" manifest.json
"sha256:ac08cal07ad%9ed699cbd28339749dd6463a84c73aald468a4241385fc4ec3876"
"sha256:b46cad6c303b49d886a7585735ebd1dc8651e83d0fab5823300cf3a9fd2febecl”
"sha256:cdd22b43a6£986£c909d504043ef6ad6528a6c1927f27c80eea2dl19ffe5079fe"
"sha256:4c9f611df095eef49c081£f758ad314b62a297172e22a8a746514d252a7a89c45"
[olbohlen@rhel85 scratch]$ du -h ac08cal07ad%9ed699cbd2833[...]

73M ac08cal07ad9%ed699cbd28339749dd6463a84c73aaldd68a4241385fc4ec3876
4.0K b46cad6c303b49d886a7585735ebdldc8651e83d0fab5823300cf3a9fd2febel
7.0M cdd22b43a6£986£c909d504043ef6ad6528a6c1927£27c80eea2dl9ffe5079fe
33M 4c9£611df095eef49c081£758ad314b62a297172e22a8a746514d252a7a89c45

These are tar(1) archives we can extract and inspect. When you
start a container, the extracted layers will be mounted with
OverlayFS.

Nhat are containers?

Olaf Bohlen V

Can We Simulate Layering? N

podman uses (1) to mount container image layers.

Since Linux 4.18 this can be done also by non-root users:

mkdir layerl

mkdir layer2

mkdir ephemeral-layer

mkdir mountdir

echo "this is file one" >layerl/fl

echo "this is file two" >layer2/f2
fuse-overlayfs -o lowerdir=$PWD/layerl:S$PWD/layer2 -o upperdir=$PWD/ephemeral-layer \
-0 workdir=$PWD/fuse-work $PWD/mountdir
1s mountdir

1 f2

$ echo "this is file three" >mountdir/f3
$ fusermount -u $PWD/mountdir

$ 1s «/£?

ephemeral-layer/f3 layerl/fl layer2/f2

oAV

Olaf Bohlen What are containers?

2

Communication System

o We need an exit!

Olaf Bohlen What are containers?

Network Access

podman uses CNI (Container Native Interface) to provide a network
interface for a container (so, a namespaced NIC), which will be
usuall created on a bridge. This is only possible for containers
started as root:

[olbohlen@rhel85 ~]1$ sudo podman run -it registry.access.redhat.com/ubi8 \
> bash -c " (dnf install -y iproute && ip a s)"
Updating Subscription Management repositories.
[...]
Complete!
1: lo: <LOOPBACK,UP, LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_l1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
2: eth0O@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UP group default
link/ether ca:dc:cc:3a:c9:e5 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.88.0.3/16 brd 10.88.255.255 scope global ethO
valid_1ft forever preferred_lft forever
inet6 fe80::c8dc:ccff:fel3a:c9e5/64 scope link
valid_lft forever preferred_lft forever

hat are containers?

Olaf Bohlen

Communication Without Privilege

Since a normal user can't instantiate interfaces usually, rootless
containers can't use an interface on a bridge. Instead rootless
containers use the userland tap driver (known from openvpn or
virtualbox for example):

[olbohlen@rhel85 ~]$ podman run -it registry.access.redhat.com/ubi8 \
> bash -c " (dnf install -y iproute && ip a s)"
Updating Subscription Management repositories.
[...]
Complete!
1: lo: <LOOPBACK,UP, LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_l1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
2: tapO: <BROADCAST,UP,LOWER_UP> mtu 65520 gdisc fg_codel state UNKNOWN group default glen 10
link/ether 86:21:df:£9:40:43 brd ff:ff:ff:ff:ff:ff
inet 10.0.2.100/24 brd 10.0.2.255 scope global tap0
valid_1ft forever preferred_lft forever
inet6 fe80::8421:dfff:fef9:4043/64 scope link
valid_lft forever preferred_lft forever

Olaf Bohlen V

Nhat are containers?

A TAP On The Net NI]:F

The tap driver is part of the universal tun/tap driver being
developed since 1999 for Linux, FreeBSD and Solaris. It allows user
processes to create an interface. Depending on your code it will
create a tun or a tap interface.

What is the difference?

o a tun interface behaves like a Point-To-Point interface and
handles IP packets

o a tap interface behaves like a Ethernet interface and handles
Ethernet frames

All packets sent to these interfaces will be received by the

application which created them. Popular examples are the (8)
or openvpn.
podman uses (1) to create a user-mode network interface

Olaf Bohlen What are containers?

Let’s Hack The Matrix

so, first we set up our simple container again:

$ mkdir -p ~/sysroot/{bin,lib64,proc,sbin}

$ for f in $(ldd /bin/{bash,df,ls,lsns,mount,ps,uname,ping} /sbin/{ip,ifconfig} | \
> tr [17 '\n’ | grep /); do cp $f sysroot/$f; done

$ sudo mount --bind /home/olbohlen/sysroot/proc /home/olbohlen/sysroot/proc

$ unshare -irmnpuUCf --mount-proc=$PWD/sysroot/proc chroot $PWD/sysroot /bin/bash
bash-4.4# /bin/ps -ef

UID PID PPID C STIME TTY TIME CMD

0 1 0 0 16:58 2 00:00:00 /bin/bash

0 2 1 0 16:58 2 00:00:00 /bin/ps -ef

bash-4.4# /bin/mount
/dev/mapper/rhel_rhel85-root on /proc type xfs (rw,relatime,seclabel,attr2,inode64, logbufs=8,
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)

Olaf Bohlen

hat are containers?

Let’s Hack The Matrix

On the host OS:

[olbohlen@rhel85 ~]$ pgrep -P $(pgrep —-x unshare) bash

2425

[olbohlen@rhel85 ~]$ slirpdnetns —--configure --mtu=65520 2425 tap0
sent tapfd=5 for tapO0

received tapfd=5

Starting slirp

* MTU: 65520

* Network: 10.0.2.0

* Netmask: 255.255.255.0
* Gateway: 10.0.2.2

* DNS: 10.0.2.3

* Recommended IP: 10.0.2.100
WARNING: 127.0.0.1:* on the host is accessible as 10.0.2.2 (set --disable-host-loopback to pr

Olaf Bohlen What are containers?

Let’s Hack The Matrix

Back in the container:

bash-4.4# /sbin/ip a s
1: lo: <LOOPBACK,UP, LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_l1ft forever preferred_lft forever
2: tap0: <BROADCAST,UP,LOWER_UP> mtu 65520 gdisc fg_codel state UNKNOWN group default glen 10
link/ether be:0c:£2:d0:28:79 brd ff:ff:ff:ff:ff:ff
inet 10.0.2.100/24 brd 10.0.2.255 scope global tap0
valid_l1ft forever preferred_lft forever
inet6 fe80::bclOc:f2ff:fed0:2879/64 scope link
valid_1ft forever preferred_lft forever
bash-4.4# /bin/ping 10.0.2.2
PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.
64 bytes from 10.0.2.2: icmp_seg=1 ttl=255 time=0.563 ms
64 bytes from 10.0.2.2: icmp_seg=2 ttl=255 time=0.127 ms
~C
---10.0.2.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1007ms
rtt min/avg/max/mdev = 0.127/0.345/0.563/0.218 ms

Olaf Boh

hat are containers?

Other Hacks With Rootless N]:]:l:

A bigger issue is that a user cannot start processes with different
uids. For podman rootless containers, there is a UID mapping.

The file /etc/subuid specifies a range of uids per user:

[olbohlen@rhel85 ~]$ id -a

1uid=4100 (olbohlen) gid=4100 (olbohlen) groups=4100(olbohlen), 10 (wheel) context=unconfined_u:un
[olbohlen@rhel85 ~]$ cat /etc/subuid

olbohlen:100000:65536

That means all uids from 100000 to 165535 are reserved for
olbohlen. The mapping looks like this:

uid in container ‘ uid outside container

0 4100 (users primary uid)
1 100000 (first subuid)
2 100001

Olaf Bohlen What are containers?

2

And What Is A Pod-?

@ a pod is a set of containers

o usually contains side-car
containers

o these containers share
certain namespaces

Olaf Bohlen V are containers?

Why Using Side-Cars? N

Kubernetes does not manage containers, it manages pods as the
most atomic item.

Pod
Container Container
apache Monitoring Agent
{main) (side car

Monitoring image

apache image

The idea is to seperate applications from helper applications to
provide seperate releases.

Olaf Bohlen What are containers?

Pods And Linux Namespaces N

So, what namespaces does a pod share between containers?
o net: They share the IP address and ports
@ ipc: so you can use IPC (shared memory, semaphores, etc)
o uts: all containers share the same hostname

You can also enable sharing the PID namespaces by setting:
vl.pod.spec.shareProcessNamespace: true

Olaf Bohlen What are containers?

Pods And Linux Namespaces N]:]:l:

(738) x230:/export/home/olbohlen/scratch$ oc logs hi-7459f5c556-gkxj4

error: a container name must be specified for pod hi-7459f5c556-gkxj4,

choose one of: [hi sidecarone]

(741) x230:/export/home/olbohlen/scratch$ oc rsh -c sidecarone hi-7459f5c556-qkxj4 ps -ef
PID USER TIME COMMAND

10006000 0:00 sleep 360000

10006000 0:00 ps -ef

(747) x230:/export/home/olbohlen/scratch$ oc rsh -c hi hi-7459f5c556-gkxj4 ps -ef

© =

UID PID PPID C STIME TTY TIME CMD

1000600+ 1 0 0 19:33 2 00:00:00 httpd -D FOREGROUND

1000600+ 26 1 0 19:33 2 00:00:00 /usr/bin/coreutils --coreuti
1000600+ 27 1 0 19:33 2 00:00:00 /usr/bin/coreutils --coreuti
1000600+ 28 1 0 19:33 2 00:00:00 /usr/bin/coreutils --coreuti
1000600+ 29 1 0 19:33 2 00:00:00 /usr/bin/coreutils --coreuti
1000600+ 30 1 0 19:33 77 00:00:00 httpd -D FOREGROUND

1000600+ 36 1 0 19:33 7 00:00:00 httpd -D FOREGROUND

1000600+ 43 1 0 19:33 7 00:00:00 httpd -D FOREGROUND

1000600+ 64 1 0 19:33 72 00:00:00 httpd -D FOREGROUND

1000600+ 66 1 0 19:33 72 00:00:00 httpd -D FOREGROUND

1000600+ 72 1 0 19:33 2 00:00:00 httpd -D FOREGROUND

1000600+ 82 1 0 19:33 2 00:00:00 httpd -D FOREGROUND

1000600+ 88 1 0 19:33 2 00:00:00 httpd -D FOREGROUND

1000600+ 106 0 0 19:42 pts/0 00:00:00 ps —ef

Olaf Bohlen

hat are containers?

Thank You

2

Thank you for your attention.

Do you have any questions?

Feel free to ask now or contact me later:
olaf.bohlen@niit.com

Olaf Bohlen What are containers?

mailto:olaf.bohlen@niit.com

